
GARLIC : Generic Ada Reusable Library for Interpartition

Yvon Kermarrec
TBlkom Bretagne

DCpartement Informatique
Technop8le de 1’Iroise

29 285 Brest
Fr ante

yvon@enstb.enst-bretagne.fr

Communication
Laurent Pautet
TBlkom Paris

DCpartement Informatique
46, Rue Barrault

75 013 Paris
France

pautetOinf.enst.fr

28 juillet 1995

ABSTRACT

This paper presents an implementation of the distributed
programming features of Ada 95 within the GNAT system.
The work we describe is the result of an international colla-
boration whose goal is to produce a high level environment
for distributed system programming. This paper focuses on
issues of interprocessor communication, since this is the core
element of our software architecture. We describe the design
and implementation of GARLIC, an interface between the
network and the application. GARLIC is an extension of the
predefined interface specified by System.RPC.

1 INTRODUCTION

A distributed system comprises a network of computers
and the software applications that execute on them. These
architectures are traditionally used to improve the perfor-
mances, the reliability and the reusability of complex ap
plications. The key difference between them and a centra-
lized system is the absence of a shared memory. Therefore,
message-passing is the sole facility for transferring informa-
tion and making the various components of the distributed
application cooperate. In fact, messages are the basic com-
munication unit at lower levels as well (e.g., at the network
level).

In the context of the GNAT project, our team is in charge
of implementing the distributed features of Ada 95. Among
other things, we have specified the compiler extensions nee-
ded to compile distributed programming constructs, and the
mechanisms that must be made available at execution time
(11). The aims of this document is to present our approach
for communication i.e., the way in which facilities for coope-
ration are made available to distributed applications. The
Generic Ada Reusable Library for Interpartition Communi-
cation (GARLIC in what follows) is a high level communi-
cation tool that constitutes the interface between the Ada
communication layer and the network level. We have folio-
wed the guidelines and the principles of the Message Passing
Interface [12] to insure the ongoing compatibility of our soft-
ware developments.

kmiskn to COPY without fee all or part of this material is grantd

provided that the -pies are not made or distributed for direct commercial

advi\ntage. the ACM copyright notice and the title of the publication and its

date JPpear. md notice is given that copying is by pemision of the

A~vxiadon fee Computing Machinery. TO copy otherwis or republish,
rquires P fee and/or specific permson.

Samuel Tardieu
Tdkom Paris

DBpartement Informatique
46, Rue Barrault

75 013 Paris
France

samQinf.enst.fr

In the first section, we present the design criteria that
guide our software developments. The second section is devo-
ted to the specific needs of Ada 95 in the context of distribu-
ted systems. Next, we present the services that are required
in our implementation to reach the goals we have selected.
Then we describe GARLIC and its integration into the GNAT
system. The last sections present tentative conclusions and
our ongoing research work.

2 DESIGN PRINCIPLES

2.1 A BRIEF PRESENTATION OF THE ADA
MODEL FOR DISTRXBUTION

The distribution of an Ada program over a network of
processon is achieved through the Ada partition model. An
Ada 83 program corresponds to an Ada 95 active partition.
An Ada 95 program consists in a set of one or more parti-
tions. A partition comprises one or more library units. Each
partition may be elaborated and executed independently of
other partitions in the program. Partitions may be active or
passive.

The interactions between partitions can be of two kinds:

- by means of remote calls. These can te either sta-
tically or dynamically bound. Units that accept re-
mote calls must be categorized with the pragma Re-
moteXall,Interface (RCI).

- by means of shared variables. Units that are categori-
zed with the pragma Shared-Passive are assigned to a
passive partition that can be accessed by other (active)
ones. Variables in such units are shared variables.

In addition, the distributed programming Annex specifies
the interface between the compiler and the Partition Com-
munication Subsystem (PCS), defined in the predefined pa-
ckage System.RPC.

2.2 DEStGN OVERVIEW

The message-passing paradigm continues to dominate muI-
tiprocessor applications where portability and improved per-
formance are both required. Recent work in developing stan-
dard message passing interfaces such as Message Passing In-
terface (MPI) [l?], and POSH 1003.12/1003.2L are indica-
tive of the interest in increasing application portability wi-
thout compromising performance. For example, MPI unifies
various schemes and defines both the syntax and semantics
of a message passing library. For those applications where
performance is less critical, approaches such as the Parallel

01995 ACM 0-89791-705-7/95/0011--0263 3.50

263

Virtual Machine (PVM) [l] have become attractive altema-
tives.

The Remote Procedure Call (RPC) paradigm[2] is a well-
known approach, It has been embodied, among others, in
the OSF Distributed Communication Environment architec-
ture[l3]. DCE provides a collection of services similar to
RPCs that are to be integrated directly in the OS. This
approach is a significant step towards facilitating the pro-
gramming of distributed systems. From our point of view,
its drawback is that it still presents services as separate from
the host programming language.

In contrast to these two approaches, the distributed ob-
ject paradigm provides a more object-oriented approach to
programming distributed systems. A distributed object is an
extension of the notion of abstract data type, that permits
the services provided by the type interface to be called in-
dependently of where the actual service is executed. When
combined with object-oriented features such as inheritance
and polymorphism, distributed objects promote a more dy-
namic and structured computational environment for distri-
buted applications. The OMG Common Object Broker Re-
quest Architecture (CORBA) [S] is an industrial-sponsored
effort to standardize the distributed object paradigm via
the CORBA Interface Definition Language (IDL). Mappings
between the IDL and different programming languages allow
for the paradigm to be expressed directly in the chosen pro-
gramming language I. Currently, several implementations of
CORBA implementations exist that map the IDL to C++.

2.3 OUR IMPLEMENTATION CRITERIA

The implementation of the Annex within the GNAT sys-
tem has been done according to the following criteria:

- Compatibility with existing distributed systems. In the
previous section, we have contrasted the Ada approach
with that of other models of distribution. These models
are widespread and cannot be ignored. Moreover, in-
teroperability is now viewed as a must for the construc-
tion of complex systems. This forces us to be compa-
tible (or try to be) with these systems. Finally, our
software developments benefit from these experiences
because their models can help us find an answer and
prevent us from falling into pitfalls. GARLIC also be-
nefits from our previous software developments [8].

- Modularity. We have not mixed low-level communica-
tion features with the high-level communication inter-
face, so that our system can be adapted to different
distributed system architectures. Our approach makes
use of the development of reusable software compo-
nents [9].

- Portability. GNAT targets a wide range of architec-
tures and operating systems thanks to the retarget-
table gee back-end. Therefore, we must deal with va-
rious network interfaces and operating systems. There-
fore, our implementation must be able to incorporate
easily new protocols. Moreover, we may have to deal
with more than one protocol for a given application
and several protocols may have to co-exist.

- Efficiency. For obvious performance purposes, we want
to make direct calls to the run-time low-level libraries
and to implement efficient algorithms. Moreover, we
use protected types and requeue to reduce the cost of

1. The mapping specification is available from the OMG as docu-
ment 85-5-16 and may be found at http://conf4.darpa.mil/corba-ada

race-free data synchronization. Another critical point
is buffer management, and we have optimized their use.

- Availability. We want to make limited modifications
to the GNAT system so that it remains readily avai-
lable on a variety of targets. Therefore, we have cho-
sen an approach where code transformation (carried
out solely by the expander phase of the compiler) is
the major issue. This approach makes it possible for
other compilers to be readily adapted to make our im-
plementation available.

- Evolution. The implementation is intended to be used
in production-quality applications and to f&ill the
needs of distributed system architects, designers, and
programmers. What we have implemented is a com-
pliant open implementation that may be extended to
meet future requirements.

3 SERVICES PROVIDED BY GARLIC

GARLIC implements communication between partitions but
also offers software services.

3.1 INITIALIZING THE DISTRIBUTED
SYSTEM

When running, a distributed system is just another sophis-
ticated application. It is sophisticated because it is compo-
sed of various cooperating software components. Taken alone
each of these elements is simple. A name server (or a domain
server) is nothing else but a data base and ancillary services
provided to clients. The complexity of a distributed system
comes from the difficulty of coordinating the activities of
these components over time.

GARLIC initialization involves several dynamic conhgura-
tions. In order to simplify the distribution of the application,
several configuration parameters are determined at run-time.
Another solution would be to determine these parameters at
configuration time but some of these have to be validated
dynamically in any case. Moreover, our approach allows fu-
ture extensions, especially in the context of fault-tolerant
applications. Among the parameters to check at run time,
two of them need discussion: Version-ID and Partition-ID.

A Version-ID is a value of type String that identifies the
version of the compilation unit that contains the declaration
of a given program unit. According to the LRM, calling stubs
and receiving stubs must check their Version-ID in order
to ensure that both clients and server use the same RCI
interface. A Partition-ID is a value of type Universal-Integer,
that identifies the partition (that is to say, the machine) on
which a given unit was elaborated. Two partitions are not
allowed to have the same partition id, and there is only one
receiving stub per RCI package. This must be checked at run
time.

3.2 PARTITION ID SERVER

Partition-ID is an integer type and instances of this type
play a major role since they make it possible for the applica-
tion to access any partition in a unique way. Thus, these id’s
must be made unique. Computing a unique number is a well-
known problem in distributed systems, and we have at least
two approaches for it. The identity can be computed from
system-dependent information (e.g., the process number and
the IP machine number) or it can be a logical number.

264

We prefer to use a logical number since the programmer
should not be able to interpret the embedded information
and access partitions directly. Moreover, the logical number
ensures independence from the underlying OS and its ser-
vices. This approach has other useful consequences, e.g. if
we integrate a fault tolerance mechanism like partition mi-
gration. In GARLIC, the partition identity is given by the
value of an incremented central counter.

In our model, partition id’s are dynamically determined.
A partition identity server allocates unique id’s to the appli-
cation partitions. Thus, the computation of a unique identity
is required when a partition elaborates itself, and partitions
may need extra information to communicate with a partition
once a given partition id is known. Moreover, the partitions
need to localize this server in some way. The information
on how to access the partition id server needs to be present
during the elaboration of any partition. For this purpose,
we introduce the notion of invocation key. This parameter
provides all the needed information to reach the desired Par-
tition-Id server: the protocol to be used, the machine num-
ber, as well as a port number in the case of TCP/IP. For
reasons of flexibility, the invocation key is an environment
variable. The partition id server and the main procedure are
both located on the ‘main’ partition.

3.3 ELABORATION

In our system, we must ensure that the different protocol
packages used by GARLIC are the Srst ones to be elaborated.
As mentioned in section 3.2, the partition id server provides
an unique identity to each new partition. Therefore, when a
partition elaborates (e.g., when it Loots), it starts by obtai-
ning an identity from the partition id server with the help of
an internal RPC. It uses the facilities of the protocol known
thanks to the invocation key.

To avoid the full recompilation of the PCS when one adds
a new protocol package, this communication package is de-
clared in the body of System.RPC.GARLIC.General which
elaborates all the protocol methods. Moreover, this ensures
that the appropriate protocol is always available to commu-
nicate with the partition id server. When a protocol package
elaborates, it registers with GARLIC.

Before elaborating System.RPC, we elaborate System.-
RPC.GARLIC.General and the package which declares the
partition id server. Thus, the partition may query its id or
may become the partition id server if it is on the main par-
tition.

3.4 ESTABLISHING A COMMUNICATION
CHANNEL

The communication channel does not appear directly in
GARLIC but in one of its child packages. To communicate
with another partition, GARLIC needs a partition identity:
the lower level communication services are then in charge of
interpreting this partition identity and using the appropriate
physical communication layer.

For example in GARLIC.TCP, communication is supported
by sockets but all the related information is kept hidden from
the user and is stored in a local repository (each partition
owns and manages such a repository). Our current approach
is to establish the communication links only when needed.
The alternative is to open all of them at elaboration time.

The expected benefit is to prevent a partition from wasting
an unexpected time setting up the channel and dealing with
connection protocol. This also avoids a number of deadlock
problems.

3.5 OTHER SERVICES

GARLIC has been designed to be extensible and to simplify
the incorporation of additional services. The notion of inter-
nal services makes it possible to extend the system functio-
nalities. The programmer of a distributed application faces
a daunting task since he has to coordinate several threads
of control. His application code can be very complex since
it needs to incorporate control of the distributed applica-
tion itself as well as trace information to monitor the dis-
tributed execution. In this context, we have isolated a few
services that are worth integrating at the system level ins-
tead of the application level. For instance mutual exclusion
and clock synchronization algorithms based on the message
passing paradigm are provided at the system level.

Termination and deadlock detection are of interest for the
programmer but the algorithms are often quite hard to im-
plement. The algorithm we have selected has been proposed
by J.M. Helary et al. [S] and is based on the examination
of messages to detect the stability and the passivity of the
distributed system. GARLIC can monitor the messages and
detect the occurrence of a partial / global deadlock or the
termination of the application.

Another service that is of interest for the application level,
integrates time related facilities. In a distributed system, we
have no physical clock but applications may need such a time
reference. We also need exchanges of messages to implement
this service: clock resynchronlzation or drift prevention, for
example.

We can also incorporate in GARLIC other paradigms for
distributed systems like Linda [3]. The recovery block me-
chanism can also be of interest for fault tolerance issues and
can be the base for transactions [7’j.

4 COMMUNICATION IN GARLIC

4.1 THE NOTION OF PROTOCOL

At the system level, the key element is the communication
protocol. Traditionally, a protocol is used to refer to a set
of precisely-defined rules and conventions used for commu-
nication between similar software modules running on the
different computers in a network [4]. In our context, parti-
tions run on computing elements of the distributed system
and each partition includes all the run-time services it needs.
GARLIC is the communication system that provides the in-
terface between the application level and the network layer.
As mentioned earlier, the model is more complex since seve-
ral network interfaces can co-exist and since several network
protocols can be used. Figure 1 illustrates the way GARLIC
and network protocols are related.

The notion of protocol that we use in GARLIC is very close
to the definition proposed by G. Coulouris. A protocol is an
instance of a tagged type whose primitive operations are
related to the access rules of the communication layer. The
type is declared as abstract, and so are several of its primitive
operations. The programmer needs to specify the abstract

265

1 System.RPC 1 I I
oal*- odlcxz(t OmY LmP 0nrTw

/
GARLIC

FIG. 1 - GARLIC and the network protocols

operations (i.e., the way to access to the communicatjon fa-
cilities) every time a new protocol is introduced in GARLIC
(i.e., every time the protocol type is extended). The protocol
type is also limited because only one instance of every pro-
tocol can exist in the system at the same time. We indicate
below the definition of this type and some of the primitive
operations.

Initiate-Send procedure has to be called first. It locks in
write mode the communication channel associated with the
partition. This procedure blocks if the communication chan-
nel is already locked by another Send request. It also returns
a Protocol object used to actually communicate with the
partition. Send (Protocol& Partition, Data) performs the
Send operation. The communication channel must be unlo-
cked after all the messages are sent, by using CompleteSend
(Protocolall, Partition). The internal service type is given
by the Operation field.

type Opcode is
(Remote-Call, -- Normal remote call
Shared-Memory, -- Shared memory message
Message-Passing, -- Free message passing
. . . 1;

type Protocol,Type is
abstract tagged limited private;

procedure Initiate-Send
(Part it ion : in Partition-ID;
Length : in Stream-Element-Count.;
Protocol : out, Protocol-Access;
Operation : in Opcode);

procedure Send
(Protocol : in Protocol-Type’Class;
Partition : in Partition-ID;
Stream : access Params-Stream-Type) ;

procedure Complete-Send
(Protocol : in Protocol-Type;
Partition : in Partition-ID) is abstract;

procedure Init iate_Receive
(Partition : out Part ition_ID:
Length : out Stream-Element-Count;
Protocol : out Protocol-Access;
Operation : in Opcode) ;

procedure Receive
(Protocol : in Protocol-Type’Class;
Partition : in Part. it ion-ID ;
Stream : access Params-Stream-Type) ;

procedure Complete-Receive
(Protocol : in Protocol-Type;
Partition : in Partition-ID) is abstract;

4.2 ADDING A NEW PROTOCOL IN
GARLIC

GARLIC is designed to simplify the integration of new pro-
tocols. Adding a new protocol is done by providing GARLIC
with a child package in which the programmer provides a
type extension to Protocol-Type, corresponding to his new
protocol. He alao must indicate the concrete primitives that
override the abstract ones.

A protocol has to register itself to GARLIC and this ope-
ration can be performed at any time. GARLIC knows about
the new protocol in an indirect way since its primitives are
stored in a descriptor which holds the dispatch table (see 2).
In this way, GARLIC knows how to get access to the set of
primitives set of a given protocol.

4.3 ENTRY POINTS IN GARLIC

GARLIC is intended to be used at two distinct levels. GAR
LIC supports the communication between the distributed
partitions and Ada 95 through RPC and shared variables.
Moreover, GARLIC offers communication facilities at the ap-
plication level. At the administration level, GARLIC is res-
ponsible for dealing with internals of the distributed appli-
cation: partition identities, localizing the partition id server,
etc..

Several interactions do exist between partitions and they
all use the communication facilities. We introduce here the
notion of service. Every message in the network is prefixed
with a service value which is used to execute the appropriate
action. GARLIC knows the following services:

Remote-Call This is the basis for RPC implementation.
On the receiver side, GARLIC unblocks a receiver task
(an agent task that is waiting for zm incoming request
to execute a service for a client), informing it that there
is a Data of length Length to read and thus a service
has to be executed for a remote client. GARLIC will
also transmit the Partition-ID of the client/sender, as
well as information on a Protocol-Type’Class which
will be used to retrieve Data from the communication
channel;

AskJ?or_NewlD This call may arrive only on the dis-
tinguished server, otherwise Program-Error is raised.
GARLIC reads the Data field which contains the Net-
work-Address of the calling partition. It then allocates
the first unused Partition-ID, stores the network ad-
dress corresponding to it for future use, registers this
partition on the right Protocol-Type’Class object and
returns the newly allocated Partition-ID with a Set--
YourPartition-ID message;

Set-Your-Partition-ID This call may not arrive on the
distinguished server (since it is the one that allocates
the new Partition-ID), otherwise ProgramError is rai-
sed. GARLIC reads the Data field which contains the

266

newly allocated Partition-ID and unblocks tasks which
were waiting for it.

Query-Network-Address This call may arrive only on
the server, otherwise Program-Error is raised. GARLIC
reads the Data field which contains the Partition-ID
of the requested Partition. GARLIC then looks up in
its tables and returns a Set-Partition-ID message with
the corresponding NetworkAddress (prepended by the
Partition-ID) if it was found; it raises Program-Error
otherwise.

Set-Partition-ID This call may not arrive on the server,
otherwise Program-Error is raised. GARLIC reads the
Data field which contains the Partition-ID and the
Network-Address of the Partition to register in the
tables. It then adds this information in its internal
tables, registers this partition on the right Protocol--
Type’Class object and unblocks tasks which were wai-
ting for informations on this Partition-ID.

Message-Passing This call may be used by the applica-
tion to do message passing between partitions without
using remote calls.

No-Operation This call is used to connect a partition to
another one at boot time without performing any re-
mote operation.

Shared-Memory This call is reserved for a future imple-
mentation of shared memory.

4.4 INTERNALS OF GARLIC

The GARLIC system can be considered as a medium-level
communication protocol since it is used by System.RPC to
exchange data between packages, but it does not deal di-
rectly with communication channels (see figure 1). Low-level
transport agents are implemented in child packages and thus
can be changed at any time without need of recompiling
GAFUIC (although relinking may be necessary) and user trans-
port protocols may be added at any time by derivation of
the Protocol-Type tagged type. A child package implemen-
ting TCP communications is provided under the name Sys-
tem.RPC.GARLIC.TCP.

System.RPC.GARLIC has no active thread of control of
its own. Its services are either called by the upper layer
(e.g., by the application level through System.RPC) when
the application uses a communication channel, or by a lower
level (e.g., System.RPC.GARLIC.TCP acts an interface to
TCP/lP) to inform GARLIC that data need to be handled.

GARLIC is built around a Synchronizer that is a protec-
ted object. This synchronizer ensures that concurrent ac-
cesses from the upper or lower layers will not corrupt internal
tables. Moreover, the entries implement event synchroniza-
tion in a rather efficient way.

4.5 PRIMITIVE OPERATIONS OF GARLIC
FOR THE APPLICATION LEVEL

GARLIC is a communication medium and its operations
are quite similar to what is available in other existing sys-
tems. Communication through the network involves buffer
and system level routines. The purpose of GARLIC is to pro-
vide the programmer with an unified network interface. In
this sense, GARLIC is generic and interacts with the network
in an ideal way.

Sending a message to another partition requires three steps:

- Preparing a stream and initializing it: GARLIC assumes
that the stream (see LRM) has already been allocated.
GARLIC automatically inserts the nature of the service
(e.g., RPC call, pure message-passing) into the stream.

- Marshalling data in the buffer: data now has to be in-
cluded in the stream. This operation is complex since
we have reduced the number of buffer copies and allo-
cations: this issue is critical because poor buffer mana-
gement has a disastrous impact on efficiency. At this
stage, the data can be encoded to fit heterogeneous
machine characteristics by using either XDR or ASN-
1.

- Once data are inserted and encoded, the buffer can be
physically sent to its destination. GARLIC passes the
butfer to the lower level, which is in charge of sending
it according to the characteristics of the required pro-
tocol.

Message reception involves three complement operations
that we do not detail in this document. The kev element we
must point out is that GARLIC plays a role of active interface
and all the network details are completely hidden from the
user code.

4.6 GLOBAL VIEW OF GARLIC

In figure 2, we indicate the global architecture of GARLIC
with its entry points and services.

4.7 PARTITION ID MANAGEMENT

ID CREATION

When a partition begins its elaboration, the first action it
performs is to declare itself to the partition id server (1). The
partition sends a registration request that provides routing
information, such as the host name if the protocol in use is
TCP. When the partition id server receives such a request, it
allocates an id and caches the routing information. It sends
to the newly registered partition its partition id (2).

ID QUERY

When a partition wants to send a message to another
partition with a given id, it has to query the partition id
server for routing information in order to communicate with
the desired partition (3). The partition id server blocks the
request if the information is not available (ie. if the desired
partition has not registered itself yet). This service provi-
ded by the partition id server informs any partition on the
routing data needed to connect to another partition (4). For
instance, in a TCP context, this information consists in the
host name and the port used by the remote partition. When
network addresses are known, the two partitions can com-
municate (5 and 6).

5 CONCLUSION AND WORK IN PROGRESS

The design and implementation of GARLIC are complete
and these elements will be integrated within the GNAT sys-
tem. In this way we hope to promote further contributions
and refinements to our implementation so that Ada can be-
come a dominant language for distributed systems in both

267

FIG. 2 - Software architecture of GARLIC

academia and industrial applications. In our implementa-
tion, we have tried to integrate various perspectives and to
consider existing approaches; this should make our system
attractive to the non-Ada community.

GARLIC is a generic software component that has been de-
signed in order to accommodate several network protocols
and communication systems. The implementation makes in-
tensive use of the new facilities of Ada 95 because they
reduce the complexity of the software (tagged types and
protected objects, for example). Our previous developments
were aiming at similar goals [S] but the implementation with
Ada 83 was more tedious to produce and more cumbersome.

We hope to continue the project and to extend GARLIC to
incorporate facilities for the management of shared memory,
among others. The algorithm [lo] has already been validated,
and it fits the requirements for embedded systems.

Another target of future developments is to adapt the re-
pository of software components that we have produced for
distributed systems and Ada 83 [S]. Our aims are to integrate
reusability and software engineering concepts for distributed
system programming, which is too often considered as net-
work or system programming. Some of these services can be
integrated into GARLIC directly. The programmer could then

Partition 2
v w.

Lead Part.

co
[Reply NefL Id=2]

Partition 1

PartitionID

Client

Id=O, Net0 H Id=l, Net1

4 I Id=2, Net=‘??

FIG. 3 - Hour to communicate with another partition

benefit of these services and be guaranteed of an efficient im-
plementation. The services that can be provided include time
related facilities, deadlo& and termination detection, fault
tolerance mechanisms.

Acknowledgment

The authors are very grateful to the GNAT team at New
York University for having invited them to the exiting GNAT
project. The authors are also specially grateful to the anony-
mous referees for their helpN comments. Pr. Ed Schonberg
and Anthony Gargaro have motivated intensive brain stor-
ming on the issues of distribution.

REFERENCES

[l] Al Geist et al. PVM: Parallel virtual Machine. The
MIT Press, 1994.

[2] A. Birrell and B. Nelson. Implementing remote piece-
dure calls. ACM Tmns. Computer Systems, 2(1):39-59,
February 1984.

[3] N. Carrier0 and D. Gelemter. How to write parallel
programs: a guide to the perplexed. ACM Computing
Surveya, 21(3):323-358, September 1989.

[4] G.F. Coulouris and J. Dolimore. Distributed systems:
concepts and design. Addison Wesley, 1988.

268

[s] DEC, HP, and et al. The common object request bro-
ker: architecture and specification. Technical Report
OMG 91-12-1, Object Management Group and X Open,
December 1991.

[S] JM Helary, C. Jard, N. Plouzeau, and M. Raynal. De-
tection of stable properties in distributed applications.
In ACM, editor, Sizth ACM symposium on principles of
distributed computing, pages 125-136, Vancouver, Au-
gust 1987.

[7] Y. Kermarrec, L. Nana, and L. Pautet. Implementing
an efficient fault tolerance mechanism in Ada 9X: an
earlv exneriment with GNAT. In Ada Eel&m confe-
rence, Bruxells, Belgium, November 1994.“ACM and
UniversitC Libre de Bruxelles.

[S] Y. Kermarrec and L. Pautet. Ada communication com-
ponents for distributed and real time applications. In
Proceedings of the TRI Ada 92 conference, pages 53C1-
536, Orlando, Florida, November 1992. ACM S&Ada.

[9] Y. Kermarrec and L. Pautet. Ada reusable software
components for education in distributed systems and
ax&cations. In J.L. Diaz-Herrera. editor. Proceedinos

“. ”

of the 7th SEI conference on Software Engineering
Education, number 750 in Lectures Notes in Compu-
ter Science, pages 77-96, San Antonio, Texas, January
1994. ACM IEEE, Springer Verlag.

[lo] Y. Kermarrec and L. Pautet. Integrating page replace-
ment in a distributed shared virtual memory. In Procee-
dings of the 14th international conference on distributed
computing systems, Poznan, Poland, June 1994. IEEE.

[ll] Y. Kermarrec, L. Pautet, and E. Schonberg. Design
document for the implementation of distributed system
annex of ada 9x in gnat. Technical report, New York
University, Courant Institute, 715 Broadway, New York
NY 10012, March 1995. (to be published).

[12] Message Passing Interface Forum. Mpi : a message pas-
sing interface standard. Technical Report 230, CS De-
partment, University of Tenessee, Knoxville, April 1994.

[13] Ward Rosenberry, David Kenuey, and Gerry Fisher.
Understanding DCE. O’Reilly and associates, inc, 1993.

Yvon Kermarrec got a PhD degree in computer science
from IRISA at Rennes University in 1988. The title of his dis-
sertation is “An approach for distributed system simulation :
software components in Ada”. He joined the Ada-Ed group
at New York Universitv as a visiting researcher. He wor-
ked with Ed Schonberg -and Robert Diwar on the NYU Ada
Compiler. In 1990, he joined the faculty at Ecole Nationale
SupCrieure des T&communications in Paris as assistant pro-
fessor. He has just arrived at Ecole Nationale Supdrieure des
TClCcommunications in Brest, France. He teaches Ada, soft-
ware engineering and distributed algorithms. His research
interests are: distributed systems, Ada and programming
languages.

Laurent Pautet received the DiplBme d’Ing&ieur from
the Ecole Nationale Sup&em-e des TClecommunications Pa-
ris (ENST-Paris), Paris, France in 1989. He worked with
E. Schonberg and H. Operowsky on parallel garbage collec-
tors. He received a PhD degree in computer science from
the ENST in Paris in 1994. He concurrently joined Dassault
Electronique (hard real-time for avionic embedded systems)
Paris, France as a research engineer in Dec. 1990. He joi-
ned the ENST Paris University as professor assistant. His
research interests include software engineering, distributed

systems, and rest-time systems. He is currently participating
to the implementation of the Ada9X Distributed Systems
Annex in the realm of the GNAT project. He is also involved
in the design and the development of a hardware/software
environment, called SPIF, offering a genuine prototyping en-
vironment for embedded real-time systems.

Samuel Tnrdieu received the Dipl6me d’Ing&nieur from
the &Cole Nationale SupCrieure des T&communications de
Paris (ENST-Paris), Paris, fiance in 1994. He is partici-
pating to several GNU projects, including the distributed
annex of the GNAT compiler. He is currently working BS
an engineer for the Elench army until August 1996 and will
be candidate for a PhD degree in computer science starting
September 1996.

269

