
The Urbi Universal Platform for Robotics

Jean-Christophe Baillie, Akim Demaille, Quentin Hocquet, Matthieu Nottale,
Samuel Tardieu

Gostai, R&D Lab, 32 Bd Victor, FR-75015 Paris, France
http://www.gostai.com

lastname @gostai.com

Abstract. Robots can free humankind from everyday chores, they can
entertain us, and even educate our children. They can carry loads, walk,
dance, sing, and express emotions. Hundreds of different robots are al-
ready sold in shops, and complex applications are being developed ac-
tively around the globe. So why are robots so not present today?
In our experience the lack of standard in robotics, be it from the hard-
ware or software point of view, makes the development of advanced ap-
plications for robotics unproductive. This is very similar to the early
days of personal computers, until the emerging of sufficiently widespread
Operating Systems increased the return-on-investment for software de-
velopment.
The Urbi platform sits on top of the large variety of software and/or
hardware components for robotics, and provides the user with a unified,
standardized, interface with which complex and portable applications
can be developed. In this paper, with present the Urbi platform and
some of its prominent components.

Introduction

Urbi is a software platform used to develop portable applications for robotics
and artificial intelligence [1, 2]. It is based on a parallel and event-driven script
language, and on a distributed component architecture.

The lack of standards in robotics makes the Urbi platform particularly sen-
sitive to differences of Application Program Interfaces (APIs) between robots,
components and so forth. In this paper, we present the Urbi platform and how
it achieves its goals.

Outline Sect. 1 describes the whole platform, focusing on the problems to solve,
and the selected, layered, solutions. On top of it portable applications can be
built; Sect. 2 presents some of the applications developed at Gostai. A key com-
ponent of the platform is the UrbiScript language1, introduced in Sect. 3.
Sect. 4 presents ongoing and future work, and Sect. 5 concludes.

1 A Universal Platform

The Urbi platform, including the UrbiScript programming language, was de-
signed to be simple and powerful. It targets a wide spectrum of users, starting
1 UrbiScript was formerly known as the Urbi programming language.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 580-591

http://www.gostai.com

2

UObject Applications
client code through liburbi

Java C++ Matlab

Urbi Engine

Urbi Kernel
UObject C++
(Ex. : motor)

UObject C++
(Ex. : camera)

UObject C++
(...)

C++/Java (Ex. : urbiLab, remote surveillance...)

Hardware

Operating System

The Urbi server is on top of the Operating System (OS) to abstract from
(computer) hardware idiosyncrasies, yet it may be deployed bare-board. The
Urbi server (the central rounded-box) is composite: (i) the Urbi engine and
the kernel (Sect. 1.1) abstract the Central Processing Unit (CPU) and OS,
and (ii) robotics or algorithmic components are unified using the UObject API
(Sect. 1.2). Differences in conventions (clockwise? anticlockwise?), units etc.
are addressed in Sect. 1.3. The intrinsically concurrent and event based nature
of robotic software is fully integrated in the Urbi platform, including in the
UrbiScript programming language (Sect. 1.4).

Fig. 1. The Urbi platform components

from children willing to customize their robots, up to researchers who want to
focus on complex scientific problems in robotics rather that on idiosyncrasies of
some robot’s specific API.

As such, the Urbi platform has already reached its goal: its youngest known
users are about twelve years old, using UrbiScript a hobbyist won a Sony
“best Aibo dance” prize, and dozens of universities throughout the world develop
advanced research in robotics using it.

Several challenges stand in the way of ease-of-use, starting with the need to
cope with a wide range of architectures. The platform was structured to cope
with the lack of proper standards for robotics, and to be simple yet powerful. A
bird-eye view of its architecture in presented in Fig. 1, and the following sections
detail the various components.

1.1 Computer Components

To gain CPU independence, UrbiScript runs on top of the Urbi Virtual Machine
(UVM), which is part of Urbi server : to port UrbiScript to a new architecture,
the UVM only needs to be adapted. The UVM is tailored to work with local

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 580-591

3

components, or device drivers, developed in low-level languages. UrbiScript is
a scripting language: it was designed to develop high-level algorithms and be-
haviors from smaller components. For instance, computer-vision primitives are
expected to be tailored for a specific robot and written for instance in C++,
while UrbiScript is suitable to implement reactive behavior based on vision.

The Urbi platform relies on engines to interact with the underlying operating-
system. Primitive services such as the UVM are provided by the Urbi kernel,
which is a generic library. It is the engine that makes it a complete and runnable
Urbi server. The engine launches the main loop and provides a few system-
dependent core information to the server, such as time. Thanks to this modeling,
the Urbi server can be ported very simply to a wide range of environments
(embedded systems, robots, simulators, . . .).

1.2 Robotics Components

The diversity of hardware components in robots is another source of complexity.
In the Urbi platform, it is addressed by the UObject architecture. It installs a
standard API on top of low-level device drivers (sensors, actuators, motors and
so forth) and of software components (computer vision, voice recognition etc.).
Thanks to this API and its associated middle-ware architecture, low-level and/or
high-level components can communicate simply, and interact with UrbiScript
programs. Existing C/C++ libraries are easily made usable from UrbiScript,
and specific code can be written to take advantage of Urbi features such as
event-driven programming, timers and variable change notifications. The UOb-
ject API can also be used to handle complex data flow between multiple software
components thanks to callback functions that are notified when any variable is
accessed (read and/or write). The UObject API maximizes code reuse: if a robot
is built from off-the-shelf components, so is the Urbi server.

UObjects can either be plugged into the server, ensuring maximum reactiv-
ity, or be standalone remote processes. Remote UObjects can be local, running
on the very robot, or on some slave computer. In the former case the server is
protected from faults in the components, and in the latter case, CPU intensive
computations can be handled by auxiliary machines. Therefore, before deploy-
ing it on a robot, the Urbi server is dimensioned, depending on the available
resources.

Thanks to these abstractions the server does not know whether it is running
on an actual robot, or a simulation thereof. UrbiScript programs run seamlessly
on robots and simulators such as Webots [6, 12]. Developing robotic applications
without simulators is virtually impossible. They considerably speed-up the de-
velopment process: they are cheap and reproducible as opposed to robots that
can be very expensive apiece, test suites are easier to write and to automate,
etc. They don’t even require the robot itself to exist: they provide a means to
examine the behavior of a robot during its design.

Low-level consistency, while necessary, is not sufficient to maximize the porta-
bility of high-level applications.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 580-591

4

1.3 High-level Universality

One can expect a dramatic increase of the market of hardware and/or software
components for robots: motors, sensors, text to speech, voice recognition, nav-
igation, face recognition. . . to name a few. To cope with this variety, the Urbi
Naming Standard defines common interfaces (or facets) and naming scheme that
must share the UObjects for equivalent components. Thanks to this abstraction,
the customer is free to select a particular component seller depending on his own
criteria.

Subtle differences between components can ruin a multi-million-dollar project
[13]. To avoid this, unit support is developed in UrbiScript. The Urbi Naming
Standard also defines the orientation axis and so forth, to standardize measure-
ments and actions. This document also defines the names and interfaces of limbs
and organs for usual robot anatomies: legs, fingers, heads, joints, sensitive skin,
accelerometers, gyroscopes etc.

These abstraction and standardization layers allow the development of portable
applications (on sufficiently similar robots). Games or utilitarian applications are
being developed at Gostai: UrbiLab (Sect. 2.2) to create elaborate remote control
for any robot, remote surveillance, educative application etc.

1.4 Concurrent and Event Driven

Traditional programming languages follow a sequential execution model. Code
is executed one statement after the other, ultimately leading to the expected
result. Even when threads are used, the code running in each thread follows a
strict iterative scheme, and their interaction may be difficult to describe [7].

Robots are designed to evolve in the real world: while they are moving around,
they need to be aware of their environment and its possible brutal changes. Un-
predictable events such as an animal crossing the robot path need to be asyn-
chronously and timely acted upon. While traditional programming languages
typically offer limited asynchronous capabilities through signals and callbacks,
the Urbi platform integrates them at the heart of the execution model, and
the UrbiScript language provides the user with short and intuitive constructs,
which we will describe in Sect. 3.2 and 3.4.

1.5 Clients/Server Architecture

Like other environments such as Player/Stage [10], the Urbi platform features
a client/server architecture. Several clients (human users, remote components,
. . .) can interact simultaneously with the server, via UrbiScript commands.
This is easily achieved since the server has concurrency built-in features made
available in UrbiScript, and thanks to the event-driven nature of the language.
The communication protocol is based on a restricted subset of UrbiScript. The
liburbi library provides an API to the middle-ware and communication layer.

This server architecture has several advantages.
Several (human) users can evaluate code simultaneously on the same server.

They can share the control of a robot, or to let one user move it around while an-
other uses the camera feedback. This make UrbiScript more “interactive” than

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 580-591

5

Fig. 2. The UrbiLive behavior editor

most other interpreted languages: while scripting languages are usually geared
toward writing scripts, UrbiScript is designed to be used directly interactively
to control robots. It behaves like a remote shell (an interactive command-line
interpreter) used to command robots at distance.

It is also the C/S architecture that allows to support remote UObject com-
ponents compiled as autonomous applications: they are simple clients. They
connect to the server, issue commands and retrieve results.

Using the Urbi communication library, one can connect various kinds of pro-
grams to the server that act like interfaces. Complex applications that interact
with an Urbi server are be developed, sending commands and exchanging values.
For instance, Gostai develops several Graphical User Interface (GUI) to program
or remote-control a robot (see Sect. 2).

Thanks to bindings of the Urbi communication library in various languages,
Urbi is open to environments such as Java, MATLAB, and Python. Although
the Urbi platform makes a special place to C++ and UrbiScript, one does not
need to know these languages to program robots or components.

2 Top-Level Applications

Thanks to the server architecture, complex applications can interact transpar-
ently with an Urbi server. This enabled Gostai to develop several powerful graph-
ical applications that ease interaction with robots.

2.1 UrbiLive

UrbiLive (Fig. 2) is a behavior editor. One graphically composes and chains
actions depending on external events in a graph-set similar fashion. Behaviors

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 580-591

6

are represented by directed graphs whose vertices are actions and edges are
transitions labeled by events. The behavior starts in a given node, and executes
its action. When one of the conditions on the outgoing edges is verified, the
transition is made and the action of the activated node is executed, and so on.

The graphs are hierarchical: every node can contain subgraphs, every action
can be decomposed into a graph. Several states can be active simultaneously, for
instance in several subgraphs of the current node. This makes designing high-
level concurrent, event-driven behavior easier.

Under the hood, UrbiLive is a standard client connected to an Urbi server,
as a human would be. It simply generates UrbiScript code for the input graph,
and sends these commands to the server.

2.2 UrbiLab

UrbiLab [5] is a graphical Urbi server inspector and effector. It enables to repre-
sent and arrange as graphical widgets Urbi values to monitor and modify them.
It can be used to create remote controls for robots, including video feedback and
motors controls. Every widget is related to one or several variables in the Urbi
world. Behind the scene, UrbiLab is a regular Urbi client. Thanks to serialization
and introspection, it can inspect and modify Urbi values.

3 The UrbiScript Programming Language

Much of the power of the Urbi platform comes from its architecture, and its
language, UrbiScript. Of course there are already too many programming lan-
guages, so why a new one? Why not extending an existing language, or rely on
some library extensions. While this debate is beyond the scope of the paper,
several observations must be made.

First, Domain Specific Language (DSL) are gaining audience because they
are much more productive than the library-based approaches. No one would con-
sider managing a database without a DSL such as SQL. Today, research is very
active to embed SQL within general purpose languages to improve security, to
expose new opportunities for domain-specific optimizations and so forth. Sec-
ond, programming robots requires a complete rethinking of the execution model
of traditional programming languages: concurrency is the rule, not the excep-
tion, and event-driven programming is the corner stone, not merely a nice idiom.
These observation alone justify the need for innovative programming languages.
Yet, programmers are usually, and for good reasons! reluctant to learn new lan-
guages. This is why UrbiScript is trying to stay with the (syntactic) spirit of
some major programming languages: C++, Java, JavaScript etc.

Not only is UrbiScript designed to write robotic applications and to inter-
actively control robots, it is also the foundation of the communication protocol
on top of which is built the client/server architecture.

In the following interactive session examples, lines starting with [00000000]

are answers from the server; the others were entered by the user.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 580-591

7

3.1 Prototype-Based Object-Oriented Language

With respect to the syntax, UrbiScript belongs to the C family: it is inspired
by C, C++, Java, and so forth. UrbiScript is dynamically typed, introducing
variables does not require to make their type explicit.

Functions are first-class entities: they behave like ordinary values. They can
be assigned to variables, passed as arguments to functions and so forth. UrbiS-
cript supports closures: functions can capture references from their environ-
ment, then later use those references to retrieve or set their content.

UrbiScript is an Object-Oriented Language (OOL): values are objects. An
object is composed of a list of prototypes (parent objects) and a list of slots. A
slot maps an identifier to an object. UrbiScript is prototype-based , or classless,
like Self [9], Io [3] and others. In class-based OOL, classes are templates that
describe the behavior and expected members of an object. They are instantiated
to create a value; for instance the Point class serves as a template to create
values such as one = (1, 1). The object one holds the (dynamic) values while
the class captures the (static) behavior. Inheritance in class-based languages is
between classes. In classless languages instantiation is replaced by cloning : an
object serves as a template for a fresh object. Inheritance relates objects.

UrbiScript is fully dynamic. Objects can be extended at run-time: proto-
types and slots can be added or removed.

var one = Object.clone (); var one.x = 1; var one.y = 1;

function one.asString () { return ” (” + x + ” , ” + y + ”) ”; };

one;

[00000000] "(1, 1)"

one.protos;

[00000000] [<Object >]

Operators are functions that have special syntactic properties: they are prefix,
infix or suffix, and obey to associativity and precedence rules.

// Truncate strings longer than len.

function String.operator /(len) {

if (size() < len)

return this

else

return this[0, len] + ” . . . ”;
};

UrbiScript features introspection: objects can be examined and modified
at run-time.

one.slotNames;

[00000000] ["*", "+", "asString", "y", "x"]

for (var s in one.slotNames)

echo(s + ” = ” + one.getSlot(s). asString () / 14);

[00000000] *** "* = function (rhs)..."

[00000000] *** "+ = function (rhs)..."

[00000000] *** "asString = function () {\n..."

[00000000] *** "y = 1"

[00000000] *** "x = 1"

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 580-591

8

3.2 Concurrency Support

UrbiScript has been designed from the beginning as a concurrent language.
Many threads may be run in parallel, and a global scheduler takes care of giving
each one its fair share of time.

Every code block may be dynamically marked with one or several tags; ac-
tions on tags allow to freeze, unfreeze or stop code execution. Tags are the basis
of every flow control operation in UrbiScript. Constructs such as return, break,
continue, and exceptions are implemented using tag operations.

The following code snippet ensures that the call to f will either terminate in
less than maxdelay or will return nil and print a message if it takes longer:
// Implement the functionality of the built-in ‘‘timeout’’ construct.

function timeOut(f, maxdelay) {

var checker = new Tag ();

checker: {

// Setup the guard in a background thread (using ‘‘,’’).

{sleep(maxdelay); checker.stop()},

return f(); // Call the user-provided function.

};

// We are here because ‘‘checker’’ has been stopped.

echo(”The computa t i on has been i n t e r r u p t e d ”);
return nil;

};

The statement run in background, launched with a comma at its end, is also
subject to being killed through the checker tag, thus aborting it if the call to f

terminates before the allotted time-span.
The Urbi scheduler has been designed to handle many parallel threads of

control through the use of coroutines. Coroutines are light threads with their own
stack and execution pointer implemented as a library, and they are commonly
used in modern interpreted languages such as Io [3]. They allow the use of the
Urbi kernel on robots whose operating system does not provide support for
multiple processes or kernel threads.

Multiple prioritized tasks can run concurrently in the same Urbi kernel. Tasks
are either created explicitly by the user or implicitly by certain constructs, such
as timeout which provides as a built-in the functionality demonstrated in the
previous example. UrbiScript also offers high-level objects such as semaphores
and barriers in the core language to synchronize concurrent access to shared
data.

In addition, the user can indicate that several computations must occur in
parallel and wait for all of them to terminate by using the & separator:
// Execute ‘‘f’’, ‘‘g’’, and ‘‘h’’ in parallel, then ‘‘u’’.

f() & g() & h();

u();

3.3 Time Management

UrbiScript enables to write very simply time-related code, thanks to paral-
lelism separators and other primitives. It provides many constructs to execute

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 580-591

9

code at given intervals, with a timeout, . . . However they are not primitives and
can be expressed directly in Urbi, as shown in the timeout example.

The UrbiScript standard library provides assignment modifiers to generate
trajectories, which is very useful when manipulating motors for instance.

// Move to position 10 in 5s.

motor.val = 10 time: 5s;

// Move to position 0 with a maximum acceleration of 0.1 unit/s2.

motor.val = 0 acc: 0.1;

// Oscillate around 1 with period π and amplitude 5.

motor.val = 1 sin:pi ampl :5;

The UrbiScript standard library provides smooth tests, which for instance
can test whether a condition is true for a given duration, which is very useful to
filter out noise.

// React when the sensor value is greater than 10 for at least 1 second.

at (sensor > 10 ∼ 1s)

react ();

Timeout example When programming interactive behaviors, one very common
need is to perform an action with a given timeout, or an action that must be
executed periodically. While this is often painful to write in classical languages,
it can be written very simply in UrbiScript thanks to temporal separators:

// ‘‘timeout (maxdelay) action’’ executes ‘‘action’’ and aborts it

// if it takes longer than ‘‘maxdelay’’ to execute. This builtin is

// similar to the ‘‘timeOut’’ function defined in an earlier example.

function f() {

sleep(1s);

echo (” f i s t e rm i n a t i n g ”);
};

// Test it.

timeout (2s) f(); // No timeout, ‘‘f’’ terminates.

[00000000] *** f is terminating

timeout (500ms) f(); // Timeout triggered, ‘‘f’’ is aborted.

// ‘‘every (delay) action’’ executes ‘‘action’’ every ‘‘delay’’.

timeout (2.5s) { every (1s) f(); }; // Will execute three times.

[00000000] *** f is terminating

[00000000] *** f is terminating

[00000000] *** f is terminating

Many more UrbiScript constructs allow the user to mix time-based and
event-based programming. Using them, complex applications with numerous
concurrent behaviors can be written painlessly.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 580-591

10

3.4 Event Driven Communication

To accompany its concurrency features described in Sect. 3.2, the Urbi kernel
offers a full-featured events mechanism. The user can define any number of
events, and install event handlers that will be executed when the corresponding
event is emitted.

Events can carry values that will be matched against patterns given in the
event handlers; the corresponding action will be executed only if the system can
unify the values carried in the event with the provided pattern:

// Create a new event called ‘‘e’’.

var e = new Event;

// Install an event handler for ‘‘e’’.

at (?e(5, (var b))) { echo(” Rec e i v ed e (5 , ” + b + ”) ”); };

// Emit event ‘‘e’’ twice with different values.

emit e(1, 3); // No match, nothing is printed.

emit e(5, 7);

[00000000] *** Received e(5, 7)

In addition to the events system, Urbi provides a publish-subscribe mechanism
allowing one or several tasks to subscribe to channels, while other tasks will
publish objects into those channels [4]. Every subscriber will receive a copy of
the data in the same order as it has been published.

The following example illustrates a logging system that presents diagnostic
messages to the user with a maximum of one message per second:

// Create the publish/subscribe object.

var logpool = new PubSub;

// Launch a background rate-limiting logger (note the comma at the end).

{

var id = logpool.subscribe;

while (var msg = logpool.getOne(id)) {// Retrieve message.

echo(msg); // Print it.

sleep (1s); // Limit rate at 1 msg/s.

};

},

// Create a function logging a message and returning immediately.

function log(msg) {

logpool.publish(msg);

};

// Log two messages in a row, they will be printed with a 1s interval.

log(” f i r s t message ”); log(” second message ”);
[00000000] *** first message

[00000000] *** second message

The publish-subscribe paradigm may easily be used to create more complex
abstractions. For example, the event system uses it internally, and building mail-
boxes such as found in Erlang [11] or rendez-vous such as found in Ada [8] is
straightforward.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 580-591

11

3.5 Features for Robotics

Other features were specifically designed to make the implementation of robotics
applications easier, but their description goes beyond the scope of this paper.
Groups allow to manipulate a set of equivalent objects as a whole.

class Leg {

// Leg constructor, invoked by ‘‘new’’.

function init(name) { var this.name = name; };

function walk() { echo(”Leg ” + name + ” wa l k i n g . ”); };

};

var legl = new Leg(” l e f t ”); var legr = new Leg(” r i g h t ”);
var legs = new Group(legl , legr);

legs.walk ();

[00000000] *** Leg left walking.

[00000000] *** Leg right walking.

// Queries to a group yield groups of values to enable chaining queries.

legs.name;

[00000000] Group ["left", "right"]

legs.name = ” c e n t r a l ”;
legr.name;

[00000000] "central"

4 Future Work

As described in Sect. 3.2, the Urbi kernel uses coroutines to implement concur-
rent control flows. It is likely that in a few years more and more robots will
have multiple processors, either strongly connected and sharing memory, as in
desktop multiprocessor systems, or loosely connected through a communication
bus, as in distributed automotive high-end cars. We plan to implement support
for those two configurations through the use of automatic remote calls, thus al-
lowing the user to balance the load between the processors. We then plan to add
live code migration to Urbi, paving the way to fault tolerance and automatic
reconfiguration.

5 Conclusion

We introduced the Urbi platform as it is today. Since previous versions [1, 2] the
core programming language, UrbiScript, and its Virtual Machine (VM) were
completely redesigned to provide a richer set of features tailored for the devel-
opment of robotic applications. A significant part of the efforts was devoted to
the establishment of standard interface to cope with the diversity between ex-
isting components and the unstoppable creativity of newcomers. Our approach
was successfully used to deploy a few complex applications on top of several
very different robots. Yet much remains to be done to achieve the level of stan-
dardization that a mature robotic market needs to finally be able to hold its
promises: a robot in every home, or almost.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 580-591

Bibliography

[1] Jean-Christophe Baillie. URBI: Towards a universal robotic low-level pro-
gramming language. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS’05), pages 820–825, 2005.

[2] Jean-Christophe Baillie. Design principles for a universal robotic software
platform and application to URBI. In Davide Brugali, Christian Schlegel,
Issa A. Nesnas, William D. Smart, and Alexander Braendle, editors, IEEE
ICRA 2007 Workshop on Software Development and Integration in Robotics
(SDIR-II), SDIR-II, Roma, Italy, April 2007. IEEE Robotics and Automa-
tion Society.

[3] Steve Dekorte. Io: a small programming language. In Companion to the
20th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA’05), pages 166–167, New
York, NY, USA, 2005. ACM.

[4] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys,
35:114–131, 2003.

[5] Gostai. The UrbiLab remote control environment for robots, version 1.6.
http://www.gostai.com/urbilab.html, 2008.

[6] Olivier Michel. Webots: Professional mobile robot simulation. Journal of
Advanced Robotics Systems, 1(1):39–42, 2004.

[7] John Kenneth Ousterhout. Why threads are a bad idea (for most purposes),
January 1996.

[8] S. Tucker Taft, Robert A. Duff, Randall L. Brukardt, Erhard Ploedereder,
and Pascal Leroy. Ada 2005 Reference Manual. Language and Standard
Libraries: International Standard ISO/IEC 8652/1995(E) with Technical
Corrigendum 1 and Amendment 1. 2007.

[9] David Ungar and Randall B. Smith. SELF: The power of simplicity. In Nor-
man Meyrowitz, editor, Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’87), vol-
ume 22, pages 227–242, New York, NY, 1987. ACM Press.

[10] Richard T. Vaughan, Brian Gerkey, and Andrew Howard. On device
abstractions for portable, resuable robot code. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’03), pages 2121–2427, October 2003.

[11] Robert Virding, Claes Wikstrom, and Mike Williams. Concurrent Program-
ming in Erlang. Prentice Hall PTR, 2 edition, 1996.

[12] Webots. http://www.cyberbotics.com, 2008. Commercial Mobile Robot
Simulation Software.

[13] Wikipedia. Mars climate orbiter — Wikipedia, the free encyclopedia, 2008.
[Online; accessed 8-September-2008].

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 580-591

http://www.gostai.com/urbilab.html

	The Urbi Universal Platform for Robotics
	Jean-Christophe Baillie, Akim Demaille, Quentin Hocquet, Matthieu Nottale, Samuel Tardieu

