
Cascaded Generic XCS
to Learn About Reminding Preferences

Nadine Richard
National Institute of

Informatics
2-1-2 Hitotsubashi,

Chiyoda-ku
Tokyo-to 101-8430, Japan

nadine@nii.ac.jp

Samuel Tardieu
ENST / ParisTech University

46, rue Barrault
75013 Paris, France

sam@enst.fr

Seiji Yamada
National Institute of

Informatics
2-1-2 Hitotsubashi,

Chiyoda-ku
Tokyo-to 101-8430, Japan

seiji@nii.ac.jp

ABSTRACT

We are developing an adaptive reminding system, which
learns when and how to present notifications. In this paper,
we focus on our XCS-based model, composed of two cas-
caded sets of classifiers: the first one learns a categorization
of calendar data, while the second selects the appropriate
forms of combinable reminders depending on the user and
device contexts. After describing the characteristics of the
input data, we present the extensions we propose to provide
a generic XCS architecture, which seems suitable for pro-
cessing those specific inputs. Finally, we describe our user
feedback mechanism, and the according reward system.

Categories and Subject Descriptors

I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms

Algorithms

Keywords

Learning Classifier Systems, personal time management, adap-
tive reminders

1. INTRODUCTION
We are developing TamaCoach, an adaptive, emotional

and expressive assistant for reminding tasks and events. This
interface agent adapts to the organizational skills and pref-
erences of a user, by learning when and how to present noti-
fications, instead of requiring the user to set explicit alarms.

A reminder can be presented in different but combinable
forms: a new item in the GUI list of pending tasks or events,
a pop-up dialogue box, an e-mail message, a mobile e-mail
message, or a sound alarm. The triggering of a reminder
depends on:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

• The relative temporal distance to the event starting
date or to the task due date.

• Various attributes that help to classify user habits and
preferences, e.g. contact information, priority or cate-
gories.

The form of a reminder mainly depends on the user status
(availability, on-going activity, physical location, and mood)
and on the capabilities of the host device. The necessary
data about tasks and events are extracted from iCalendar
files, which are produced by an external calendar or todo
management application. We gather information about the
current context of the user through our GUI, and informa-
tion about the agent execution context through the operat-
ing system.

As users may interact infrequently with their calendar-
ing application, designing an appropriate feedback system
for the learning module is a crucial issue. The user inter-
acts both explicitly and implicitly with TamaCoach, re-
spectively through the dedicated user interface (GUI and
e-mails), or by updating iCalendar data through his/her
favourite calendaring application. In particular, the user can
explicitly respond to a notification, in order give feedback
about the usefulness of the reminding system.

Our XCS-based model is composed of two cascaded sets
of classifiers: the first set categorizes tasks and events in
terms of temporal distances, priorities, etc., in order to de-
cide whether a reminder should be triggered, while the sec-
ond set evaluates the user and the device contexts, in order
to select the suitable kinds of notifications.

2. RELATED WORK

2.1 Personal Time Managers
Adaptive systems like PTIME (as part of the PExA as-

sistant) learn about user scheduling habits and preferences,
mostly in order to autonomously negotiate meetings [1].
Like most of the investigated office- or healthcare-related
personal assistants, PExA is a cognitive agent that learns
and reasons about tasks, user behaviour and its own be-
haviour, in order to justify its actions, answer questions and
give advice.

Autominder is an adaptive reminding system, intended
for cognitively impaired elders, who prefer to live at home
[2]. It learns about routine activities, and monitors their
daily performance in order to issue reminders whenever an

2923

essential task is not executed on time. Autominder is based
on dynamic constraint solving, and focuses on detecting the
discrepancies between a predefined plan and the actual per-
formance of tasks.

2.2 XCS for Context Detection
Learning Classifier Systems have been extensively used for

data-mining and for modeling animats. They have less often
been applied to interface agents, especially to learn about
user’s preferences and habits. Recently, Shankar et al. have
been experimenting the use of a classical ternary XCS to
learn about the user context [5]. The authors first gathered
data about when a subject preferred to be interrupted by a
reminding system when performing a task. After a step of
off-line mining of those data, their Sycophant system was
able to predict which reminder1 would be suitable for an ap-
pointment, given the current user context (keyboard/mouse
activity, state of main processes) and user’s vicinity context
(motion and speech detection).

2.3 TamaCoach
The objective of TamaCoach is not to help users in main-

taining a todo-list, but to learn when and how to remind
them about what they have explicitly planned to do. How-
ever, such an application is a complement to more complex
assistants like PExA. As suggested by its name, the ulti-
mate purpose of the TamaCoach project is to investigate
virtual coaching in the case of personal time management.
Our mid-term goal is however to experiment on its adap-
tiveness and expressiveness. More information about the
emotional and expressive aspects of our work can be found
in [3].

Even if Sycophant triggers adaptive reminders for ap-
pointments, this system focuses on the automatic detection
of the level of interruptibility of the user, considering the
internal and external contexts. Before selecting a set of re-
minders depending on the user context, TamaCoach per-
forms a categorization of current events and tasks.

3. DESCRIBING SITUATIONS
In order to trigger an appropriate reminder, it is neces-

sary to extract relative temporal distances and additional
values from iCalendar data, and to incorporate the con-
text of both the user and the application. Most of the con-
ditional attributes processed by our learning module corre-
spond to fields provided by the iCalendar format. iCal-
endar data are extracted to be stored into a local database.
This database also contains additional attribute values, com-
puted from past experiences, e.g. the average delay in achiev-
ing a given category of task. Most of the values stored in
the database take part in the decision process; in this case,
before being sent to the Situation Manager, the values are
discretized.

3.1 Calendar Data
iCalendar files mainly contain the following information

about each task or event: absolute dates (start date, event
end date, task due date), duration, recurrence rules, user-de-
fined categories, alarms, progress status of a task, involved

1among four possible: pop-up window, voice reminder, both,
or none

contacts, and various other characteristics (summary, prior-
ity, transparency, location, etc.). Some iCalendar fields,
like the summary or the attached documents, are not signif-
icant enough for the learning process; their values are stored
in the database only to be presented to the user within the
reminders.

Categorical information like priority, transparency, user-
defined categories, or involved contacts are directly extracted
from the raw iCalendar data. Other values are computed
from iCalendar] data before being stored in the database.
In particular, the relative temporal distance is necessary to
decide when to trigger a reminder: it corresponds to the
duration between the current date, and the starting date of
an event or the due date of a task. Relative temporal dis-
tances are computed from iCalendar dates, durations and
reccurrence rules. The reccurrence rules are translated into
separate occurrences, with absolute dates and durations.

To be relevant for the learning mechanism of our agent,
the raw distance is approximated and discretized into a pair
of symbolic values, the granularity and the distance, in or-
der to express how close the current date is to the deadline
or starting date. With such a decomposition, a calendar
item is easily categorized as happening soon or in a long
time. Keeping track of the granularity is necessary to con-
sider relative symbolic values like very close or far in an
appropriate time context.

For clarity and efficiency purposes, we chose a set of sig-
nificant thresholds in order to categorize both the granu-
larity and the approximate value of a distance, instead of
proposing functions for computing this categorization. The
granularity of an item can be very short-term (<24 hours),
short-term (<10 days), mid-term (<42 days) or long-term
(≥42 days). For each granularity, the temporal distance can
take six values, from very close to very far, or can be as-
signed to late2. For instance, a close event will start within
the next hour for a very short-term granularity, or within
the next two weeks on a mid-term scale.

From the number and the priority of current tasks, ex-
tracted from iCalendar data, we also compute the current
task load of the user. This value completes the informa-
tion about the busy state of the user, which might not be
accurate enough.

3.2 Historical Data
For learning a generalized classification of calendar items,

we assumed that the most useful data are the user-defined
categories assigned to an event or a task. Therefore, in order
to learn about the user habits concerning a kind of activ-
ity, we propose to use additional attributes related to the
categories of past events and tasks: the average duration
and the average delay observed for a given category, plus
a flag indicating whether the user is generally early when
achieving this kind of task or attending this kind of event3.

On the other hand, notifications can be repeated only
if the user explicitly asks to be reminded later. As a fre-
quent repetition of the same reminder will probably annoy
the user, information about previous reminders enables the
system to learn when to present again the same notification

2This additional distance value can be used for each granu-
larity, in order to express the severity of the delay since the
starting date or the due date occurred.
3If this is the case, the category delay represents how long
before the deadline this kind of task is usually achieved.

2924

content. We thus also store the number of reminders already
triggered for a given item, and the temporal distance since
the last reminder.

3.3 User Context
The user status is the agregation of the following infor-

mation: the busy state (available, busy, very busy, away,
signed-off), the mood (very good, good, average, bad, very
bad), the activity (work, vacation, commuting, sick, confer-
ence, etc.), and the location (office, home, transportation,
etc.).

The domains of the location and the activity attributes
are defined and extended by the user, while the busy state
and the mood have a fixed set of values. Presently, the user
status is gathered directly through the GUI. Nevertheless,
it would be more reliable and less distractive to detect the
user activity load automatically, through monitoring (key-
board/mouse activity, estimated posture, biosensors, etc.).

3.4 Device Context
The execution context of TamaCoach is composed of the

device attribute (desktop, PDA, etc.), and two flags that in-
dicate whether the host device has a network connection,
and whether it can play sounds. Such information is re-
quired to adapt the selected actions to the execution envi-
ronment: for instance, if the device has no network connec-
tion, the reminding system cannot send an e-mail.

4. CASCADED GENERIC XCS
The learning system of TamaCoach is composed of two

dependent XCS modules, with different purposes. Both
Classifier Systems are based on the same model of a generic
XCS, extended to take into account the specificities of our in-
put data. This model is implemented in Python, a portable,
dynamic, efficient and pure object-oriented language. This
language is particularly suitable for quick prototyping, and
is available for the platforms we are experimenting on.

4.1 Two Cascaded XCS
TamaCoach learns about two distinct functions: when to

trigger a reminder, and how to present this notification to
the user. As shown in figure 1, the learning system is com-
posed of two XCS-based modules, connected through the
Situation Manager. The first Classifier System (CS1) cate-
gorizes the data concerning a given calendar item. Its out-
put is a priority value, which indicates how urgently Tama-
Coach should trigger a reminder for the item; a priority of
0 means that no reminder should be presented. Then, if this
priority is not 0, its value is used to create a situation vector
for the second Classifier System (CS2).

Depending on the current context of both the user and
the host device, and on the priority given by the first set of
classifiers, CS2 is in charge of choosing the appropriate kinds
of reminders to be produced. Because the possible reminder
forms are compatible (e.g. TamaCoach can launch a pop-
up window and send an e-mail for the same item), the output
of CS2 is a set of actions to be performed. As CS2 needs
CS1 output to process the given situation, CS1 and CS2 are
said to be cascaded.

4.2 Any Discretized Value
The discrete values of conditional attributes and actions

can be of any type, as long as the right method is available

Figure 1: Architecture of the learning system.

for testing the equality between two objects. Attributes and
actions can also take the Python None value, which corre-
sponds to the # character used in classical ternary LCS. In
our application, values are booleans, integers or character
strings.

Each attribute is associated to a value domain. The form
of the condition part of the rules is simply defined at the
creation of the XCS by giving a list of the value domains.
The set of action values is also defined when instanciating
the system. Nevertheless, some domains can be dynamically
modified, when referring to user-defined values: the calendar
names, the item categories and locations, the contacts, the
user locations and activities, the host device.

4.3 Situation Instances
Successive situations are produced by the Situation Man-

ager. In case of multiple contacts and/or categories for a
single item, a set of situation instances is created in order
to let the Classifier System evaluate one percept for each
contact or category. This solution is inspired from the work
of G. Robert [4]: some attributes, e.g. the positions of sur-
rounding enemies in a first-person shooting game, are con-
sidered like variables to be instanciated successively for the
same situation.

A situation is thus a list of situation instances: this list is
given to the XCS, which selects the most suitable action for
each instance, and thus produces a list of actions matching
the whole situation. If needed, this set of actions go through
a compromise phase. In particular, for our application, such
a compromise is necessary to compute a single priority value
from the set of priorities chosen by CS1.

5. THE REWARD SYSTEM

5.1 Getting Feedback from the User
Together with a pop-up or an e-mail reminder, five possi-

ble replies are proposed to the user:

• Accept : the reminder was useful and the user will act
immediately, e.g. by finishing the task or attending
the meeting.

• Later : the reminder was useful but has to be presented
again later, e.g. if the user cannot perform the task
immediately.

2925

• Too early : the reminder has to be presented again
later, because it was issued too early.

• Ignore: the user does not care about that particular
task or event.

• Too late: the user does not care about the reminder,
because it arrived too late.

The items for which the user has replied accept, ignore
or too late are considered as acknowledged, and will not be
processed by the learning system anymore. A later or too
early reply will trigger a new reminder later.

This light-weight, explicit feedback system enables Tama-
Coach to evaluate the quality of its actions, without dis-
turbing busy users too much. Nevertheless, in order to keep
the system useable, we cannot constrain the user to reply ex-
plicitly to each reminder: updates of the iCalendar data
using an external tool can also be considered as an implicit
response to a reminder. Any user reply causes the according
reminders to be destroyed, but only explicit replies will be
taken into account for computing reward values.

The user may not reply immediately to a reminder for
various reasons: she forgot to update the user status before
leaving the office, did not check her mobile e-mails, or is
too busy to reply by e-mail or through the GUI. It means
that a new notification can be issued even when a previous
reminder is awaiting for the user’s action. A notification will
stay in the list of pending reminders until the user answers
back, either explicitly or implicitly.

5.2 Computing and Distributing Rewards
The value of the reward is computed from the explicit re-

ply given by the user to a specific reminder and concerning
a specific task or event. All the rules that triggered notifica-
tions for the same calendar item will be rewarded, but the
replied reminder will lead to a stronger positive or negative
value to be sent to the involved set of rules.

The accept reply indicates that the user found the no-
tification useful: the reward is thus maximal. The later
response means that the notification was useful, but should
be repeated at some point: the reward is positive. When
answering too early, the user expresses that the notification
should have been issued later: the triggering rules are thus
slightly punished. The ignore reply means that reminding
this kind of items is useless: the rules will receive a negative
reward. The rules will get the maximal punishment if the
user indicates that the notification arrived too late.

Because of the delayed, asynchronous replies coming from
the user, the set of rules that triggered a particular notifi-
cation needs to be stored within each XCS, until the appro-
priate reward is received. Therefore, we need to keep track
of a set of rules, using a set identifier. However, a delayed
reply should not be considered as a negative feedback, as we
cannot know why the user did not react immediately. We
thus just consider that, in case of a delay, the next reminders
will not be selected by an up-to-date set of rules.

The user can update the iCalendar data independently
from TamaCoach: if there are awaiting notifications con-
cerning the modified item, they are simply destroyed. No
reward can be computed, as implicit actions do not give any
clue on the usefulness of the notifications. Therefore, we
have extended the XCS model with a mechanism to forget
about a set of rules, without giving a reward.

6. CONCLUSION AND FUTURE WORK
We have presented our adaptive reminding system, in par-

ticular the main features and the architecture of the XCS-
based learning module. We have defined the requirements in
terms of contextual input data, to be extracted from iCal-
endar files, or to be obtained from the user and from the
host device. We also have described how to get useful but
light-weight feedback from the user, in order to compute
appropriate reward values for the learning system.

Our prototype has been developped in Python, with a
Qt GUI, and is running under three different platforms: a
desktop PC (GNU/Linux), a laptop PC (MS-Windows),
and a Zaurus PDA (GNU/Linux). The system is currently
being evaluated, using a basic user simulator and stereo-
typed calendaring data.

In parallel, we are investigating how to simulate various
user profiles for evaluating and tuning the learning system.
Thanks to this simulator, we expect to be able to provide
pre-trained sets of classifiers, which will adjust to the re-
minding preferences of individual users. Afterwards, we will
extend the prototype with an animated character, and con-
duct experiments with human users in order to validate our
hypothesis about the possible influence of an adaptive, emo-
tional and expressive reminding system on different kinds of
users.

7. ACKNOWLEDGEMENTS
This research project is founded by the Japan Society for

the Promotion of Science (JSPS).

8. REFERENCES
[1] P. Berry, K. Conley, M. Gervasio, B. Peintner,

T. Uribe, and N. Yorke-Smith. Deploying a
Personalized Time Management Assistant. In
Proceedings of the International Conference on
Autonomous Agents and Multi-Agent Systems
(AAMAS), May 2006. Hakodate, Japan.

[2] M. E. Pollack, L. Brown, D. Colbry, C. E. McCarthy,
C. Orosz, B. Peintner, S. Ramakrishnan, and
I. Tsamardinos. Autominder: An Intelligent Cognitive
Orthotic System for People with Memory Impairment.
Robotics and Autonomous Systems, 44(3-4), Sept. 2003.

[3] N. Richard and S. Yamada. An Adaptive, Emotional,
and Expressive Reminding System. In Proceedings of
the AAAI Spring Symposium on Interaction Challenges
for Intelligent Assistants, Mar. 2007. Stanford, USA.

[4] G. Robert. MHiCS, une architecture de sélection de
l’action Motivationnelle et Hiérarchique à Systèmes de
Classeurs pour Personnages Non Joueurs adaptatifs.
PhD thesis, Université Paris 6, May 2005.

[5] A. Shankar and S. J. Louis. Learning Classifier Systems
for User Context Learning. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), Sept.
2005. Edinburgh, UK.

2926

